Page 1 of 1

Inegalitate logaritmica

Posted: Sun Jan 25, 2009 8:14 pm
by Marius Mainea
Aratati ca:

\( \log_3(\log_35)+\log_5(\log_57)+\log_7(\log_73)>0 \)

Posted: Mon Jan 26, 2009 10:03 am
by andy crisan
notam \( \left{lg3=a\\lg5=b\\lg7=c \)si \( \left{lga=x\\lgb=y\\lgc=z \)si inlocuind vom obtine in final ca \( \frac{x}{c}+\frac{y}{a}+\frac{z}{b}>\frac{x}{a}+\frac{y}{b}+\frac{z}{c} \)care este adevarata caci \( (x,y,z) \)si\( (\frac{1}{a},\frac{1}{b},\frac{1}{c}) \)sunt invers ordonate si cum stim TEOREMA:Fie \( x=(x_{1},...,x_{n}) \) si \( y=(y_{1},y_{2},...,y_{n}) \) n-uple de numere reale,\( n\geq2 \).Daca \( x \) si \( y \) sunt invers ordonate, atunci, dintre toate sumele \( S(x,y_{\alpha}) \), cea minima corespunde permutarii identice.
Aplicam aceasta teorema in ceea ce am obtinut si problema este gata.