Page 1 of 1

Inegalitate

Posted: Sat Jan 24, 2009 7:55 pm
by alex2008
Sa se arate ca \( (1+\frac{1}{n})^n\le (1+\frac{1}{n+1})^{n+1} ,\ (\forall)n\ge 1 \) .

Posted: Sat Jan 24, 2009 10:55 pm
by Marius Mainea
Flosim Inegalitatea lui Bernoulli:

\( (1+x)^n\ge 1+nx \) pentru orice \( x\ge-1 \)

Astfel dupa putine calcule inegalitatea noastra se reduce la

\( \frac{n+1}{n+2}\le [1-\frac{1}{(n+1)^2}]^n \)

care este adevarata luind in inegalitatea lui Bernoulli \( x=-\frac{1}{(n+1)^2} \)