Inegalitati de tip Aczel (proprii).
Posted: Sun Jan 18, 2009 7:32 pm
Inegalitati de tip Aczel :
Daca \( a \) , \( b \) , \( c \) sunt trei numere reale positive, atunci :
\( \odot\ \ \underline {\overline {\left\|\ (ab + bc + ca)\sqrt 3 + \frac 12\cdot \sum (b - c)^2\ \le\ (a + b + c)\cdot\sqrt {a^2 + b^2 + c^2}\ \right\|}}\ . \)
\( \odot\ \ 3\sqrt {abc(a+b+c)}+\frac {\sqrt 2}{2}\cdot \sum (b-c)^2\le \left(a^2+b^2+c^2\right)\sqrt 3\ . \)
\( \odot\ \ 3(ab+bc+ca)+\frac {\sqrt 2}{2}\cdot \sum (b-c)^2\le (a+b+c)\cdot\sqrt {3\left(a^2+b^2+c^2\right)}\ . \)
Daca \( 0 < a_1\le a_2\le \ldots \le a_n \) si \( x_1\ge x_2\ge \ldots\ge x_n>0 \) atunci
\( \underline {\overline {\left\|\ \frac 1n\cdot\sqrt {\sum_{1\le j<k\le n} (a_j-a_k)^2\cdot\sum_{1\le j<k\le n} (x_j-x_k)^2} + \sum_{k=1}^n a_kx_k\ \le\ \sqrt {\sum_{k=1}^n a_k^2\cdot\sum_{k=1}^n x_k^2}\ \right\|}} \)
care este o intarire a inegalitatii C.B.S. \( \sum_{k=1}^n a_kx_k\ \le\ \sqrt {\sum_{k=1}^n a_k^2\cdot\sum_{k=1}^n x_k^2} \)
in situatia speciala cand cele doua siruri finite \( a_k \) , \( x_k \) , \( k\in\overline {1,n} \) sunt invers ordonate.
Daca \( a \) , \( b \) , \( c \) sunt trei numere reale positive, atunci :
\( \odot\ \ \underline {\overline {\left\|\ (ab + bc + ca)\sqrt 3 + \frac 12\cdot \sum (b - c)^2\ \le\ (a + b + c)\cdot\sqrt {a^2 + b^2 + c^2}\ \right\|}}\ . \)
\( \odot\ \ 3\sqrt {abc(a+b+c)}+\frac {\sqrt 2}{2}\cdot \sum (b-c)^2\le \left(a^2+b^2+c^2\right)\sqrt 3\ . \)
\( \odot\ \ 3(ab+bc+ca)+\frac {\sqrt 2}{2}\cdot \sum (b-c)^2\le (a+b+c)\cdot\sqrt {3\left(a^2+b^2+c^2\right)}\ . \)
Daca \( 0 < a_1\le a_2\le \ldots \le a_n \) si \( x_1\ge x_2\ge \ldots\ge x_n>0 \) atunci
\( \underline {\overline {\left\|\ \frac 1n\cdot\sqrt {\sum_{1\le j<k\le n} (a_j-a_k)^2\cdot\sum_{1\le j<k\le n} (x_j-x_k)^2} + \sum_{k=1}^n a_kx_k\ \le\ \sqrt {\sum_{k=1}^n a_k^2\cdot\sum_{k=1}^n x_k^2}\ \right\|}} \)
care este o intarire a inegalitatii C.B.S. \( \sum_{k=1}^n a_kx_k\ \le\ \sqrt {\sum_{k=1}^n a_k^2\cdot\sum_{k=1}^n x_k^2} \)
in situatia speciala cand cele doua siruri finite \( a_k \) , \( x_k \) , \( k\in\overline {1,n} \) sunt invers ordonate.