Page 1 of 1

Triunghi dreptunghic

Posted: Wed Jan 14, 2009 9:13 am
by alex2008
Aratati ca intr-un triunghi dreptunghic , dreapta \( IG \) nu poate fi paralela cu ipotenuza , insa poate fi paralela cu una dintre catete (notatiile sunt cele cunoscute) .

Re: Triunghi dreptunghic

Posted: Wed Jan 14, 2009 4:43 pm
by Virgil Nicula
alex2008 wrote:Aratati ca intr-un triunghi dreptunghic , dreapta \( IG \) nu poate fi paralela cu ipotenuza ,
insa poate fi paralela cu una dintre catete (notatiile sunt cele cunoscute).
Fie \( \triangle ABC \) oarecare pentru care vom caracteriza particularitatea \( IG\ \parallel\ BC \) .

Asadar, \( IG\ \parallel\ BC\ \Longleftrightarrow\ 3r=h_a\ \Longleftrightarrow\ 3ar=2pr\ \Longleftrightarrow\ b+c=2a\ . \)

In concluzie, \( \overline {\underline {\left\|\ IG\ \parallel\ BC\ \Longleftrightarrow\ b+c=2a\ \right\|}}\ . \)

Presupunem \( AB\perp AC \) , adica triunghiul \( ABC \) este \( A \) - dreptunghic.

In acest caz \( (b+c)^2\le 2\left(b^2+c^2\right) \) , adica \( b+c\le a\sqrt 2 \) . Apar trei cazuri.

\( \odot\ IG\ \parallel\ BC\ \Longleftrightarrow\ \ b+c=2a\ \Longrightarrow\ 2a\le a\sqrt 2 \) , ceea ce inseamna ca \( IG\perp BC \)este absurd.

\( \odot\ IG\ \parallel\ AC\ \Longleftrightarrow\ \ a+c=2b\ \Longleftrightarrow\ a=2b-c\ \Longleftrightarrow\ b^2+c^2=4b^2-4bc+c^2\ \Longleftrightarrow\ \frac a5=\frac b4=\frac c3\ . \)

\( \odot\ IG\ \parallel\ AB\ \Longleftrightarrow\ \ a+b=2c\ \Longleftrightarrow\ a=2c-b\ \Longleftrightarrow\ b^2+c^2=4c^2-4bc+b^2\ \Longleftrightarrow\ \frac a5=\frac b3=\frac c4\ . \)

OLM Iasi 2008

Posted: Wed Jan 14, 2009 9:29 pm
by maxim bogdan
Este Problema 2 de la Olimpiada Locala Iasi 2008, clasa a IX-a. Pentru subiect: aici

Posted: Wed Jan 14, 2009 9:31 pm
by alex2008
Exact . Din aceasta cauza am propus-o la clasa a IX-a . :D