Page 1 of 1

Etapa nationala - Ucraina

Posted: Sun Jan 11, 2009 12:13 pm
by alex2008
Pentru orice intreg n demonstrati inegalitatea :
\( \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+...+\frac{n+2}{n!+(n+1)!+(n+2)!}\le \frac{1}{2} \) .

Posted: Sun Jan 11, 2009 6:06 pm
by DrAGos Calinescu
Studiem termenul general:\( \frac{n+2}{n!+(n+1)!+(n+2)!}=\frac{n+2}{n!(n+2)+(n+2)!}=\frac{1}{n!+(n+1)!}=\frac{1}{n!(n+2)}=\frac{n+1}{(n+2)!}=\frac{(n+2)-1}{(n+2)!}=\frac{1}{(n+1)!}-\frac{1}{(n+2)!} \)
Acum \( \sum{\frac{n+2}{n!+(n+1)!+(n+2)!}}=\frac{1}{2}-\frac{1}{(n+2)!}\le\frac{1}{2} \)

Posted: Sun Jan 11, 2009 6:19 pm
by mihai++
Primul termen este \( \frac{3}{1!+2!+3!}=\frac{3}{1+2+6}=\frac{1}{3} \). :)

Posted: Wed Jan 14, 2009 10:54 pm
by alex2008
Da , primul termen este \( \frac{1}{3} \) . Nu inteleg ce vreti sa spuneti . :?

Posted: Wed Jan 14, 2009 11:13 pm
by DrAGos Calinescu
Ce, am gresit? :D Mie imi pare corect!

Posted: Thu Jan 15, 2009 12:07 am
by alex2008
Pai , da , la aceeiasi rezolvare m-am gandit si eu . Nu inteleg insa ce rost are observatia domnului mihai++ . :?