Page 1 of 1

Ecuatie diofantica

Posted: Sat Jan 10, 2009 11:48 pm
by alex2008
Sa se gaseasca toate perechile \( (x,y) \) de numere intregi cu proprietatea : \( x^3-4xy+y^3=-1 \) .

Solutie

Posted: Mon Jan 12, 2009 7:21 pm
by maxim bogdan
\( x^3-4xy+y^3=-1\Longleftrightarrow x^3+y^3+1-4xy=0\Longleftrightarrow x^3+y^3+(\frac{4}{3})^3-3\cdot xy\cdot\frac{4}{3}=\frac{37}{27}\Longleftrightarrow (3x)^3+(3y)^3+4^3+3\cdot (3x)\cdot (3y)\cdot 4=37. \)

Aplicand cunoscuta identitate: \( a^3+b^3+c^3-3abc=\frac{1}{2}\cdot (a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2], (\forall) a,b,c\in\mathbb{R} \) obtinem:

\( (3x+3y+4)[(3x-4)^2+(3y-4)^2+(3x-3y)^2]=74 \)

De aici e usor de rezolvat analizand toate cazurile.