Page 1 of 1

O problema interesanta! (OLM Iasi 2008)

Posted: Fri Jan 02, 2009 12:16 pm
by maxim bogdan
Fie multimea \( A=\{1,2,3.....98\}. \) Aratati ca oricum am alege \( 50 \) de elemente ale lui \( A \), exista doua printre ele avand suma cub perfect.

Posted: Fri Jan 02, 2009 1:17 pm
by Marius Mainea
Formam multimile :

\( A_1=\{1;26\},A_2=\{2;25\},...,A_{13}=\{13;14\} \)

si

\( B_1=\{27;98\},B_2=\{28;97\},...,B_{36}=\{62;63\} \)

Cum sunt 49 multimi si 50 numere din ,,principiul cutiei'' exista 2 care vor fi in aceeasi multime, deci au suma sau 27 sau 125.