Page 1 of 1
Inegalitate in 4 variabile
Posted: Thu Jan 01, 2009 5:12 pm
by Marius Mainea
Daca a, b, c, d sunt patru numere pozitive cu abcd=1 atunci :
\( \frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}\le 1 \)
Solutie!
Posted: Fri Jan 02, 2009 4:57 pm
by maxim bogdan
Inegalitatea este echivalenta cu:
\( (a+3)(b+3)(c+3)(d+3)\geq \sum_{cyc}(a+3)(b+3)(c+3) \)
\( \Leftrightarrow 3(\sum_{cyc}abc)+9(\sum_{cyc}ab)+27(\sum_{cyc}a)+82\geq \sum_{cyc}abc+6(\sum_{cyc}ab)+27(\sum_{cyc}a)+108 \)
\( \Leftrightarrow 2(\sum_{cyc}abc)+3(\sum_{cyc}ab)\geq 26. \)
Din Inegalitatea mediilor obtinem:
\( 2(\sum_{cyc}abc)=2(abc+bcd+cda+dab)\geq 2\cdot 4\sqrt[4]{(abcd)^3}=8(*) \)
\( 3(\sum_{cyc} ab)=3(ab+ac+ad+bc+bd+cd)\geq 3\cdot 6\sqrt[6]{(abcd)^3}=18(**) \)
Prin sumarea relatiilor \( (*) \) si \( (**) \) obtinem inegalitatea ceruta!
Re: Solutie!
Posted: Fri Jan 02, 2009 5:03 pm
by Marius Mainea
Se poate demonstra ca daca abcde=1, toate pozitive,
atunci \( \sum{\frac{1}{a+4}\le 1 \)?
Cazul general!
Posted: Fri Jan 02, 2009 6:21 pm
by maxim bogdan
Ok. In cazul general aceasta problema a fost propusa de Gheorghe Eckstein la Barajul de selectie al lotului Romaniei pentru OIM 1999.
Sa enuntam problema:
Fie \( x_{1},\dots ,x_{n} \) numere reale strict pozitive astfel incat \( x_{1}\dots x_{n}=1. \) Atunci are loc inegalitatea:
\( \sum^n_{i=1}\frac{1}{n-1+x_{i}}\leq 1 \)
Solutie. Sa presupunem ca : \( \sum^n_{i=1}\frac{1}{n-1+x_{i}}=\frac{1}{p} \) unde \( p<1. \) Notam: \( a_{i}=\frac{p}{n-1+x_{i}},(\forall)i=\overline{1,n}. \) Deducem usor faptul ca: \( a_{i}<\frac{1}{n-1} \)
\( a_{i}=\frac{p}{n-1+x_{i}}\Rightarrow x_{i}=\frac{p}{a_{i}}-n+1 \)
Din enunt avem: \( 1=\prod^n_{i=1} x_{i}=\prod^n_{i=1}(\frac{p}{a_{i}}-n+1)<\prod^n_{i=1}(\frac{1}{a_{i}}-n+1). \)
Ar fi ideal sa demonstram ca:
\( \prod^n_{i=1}(\frac{1}{a_{i}}-n+1)\leq 1 \), unde \( \sum^n_{i=1}a_{i}=1. \)
\( \prod^n_{i=1}(\frac{1}{a_{i}}-n+1)=\prod^n_{i=1}(\frac{1-(n-1)a_{i}}{a_{i}}). \)
Vom face urmatoarea substitutie: \( b_{i}=1-(n-1)a_{i}\Rightarrow a_{i}=\frac{1-b_{i}}{n-1} \). Prin sumare dupa \( i \) se obtine ca: \( \sum^n_{i=1}b_{i}=n-(n-1)(\sum^n_{i=1}a_{i})=1. \)
Inegalitatea de demonstrat este echivalenta cu:
\( \prod^n_{i=1}(1-b_{i})\geq (n-1)^n\cdot\prod^n_{i=1}b_{i} \)
Din Inegalitatea mediilor vom obtine ca:
\( \prod^n_{i=1}(1-b_{i})=\prod^n_{i=1}(\sum_{i\neq j}b_{j})\geq (n-1)^n\cdot \sqrt[n-1]{(\prod^n_{i=1}b_{i})^{n-1}}=(n-1)^n\cdot\prod^n_{i=1}b_{i}. \)
Deci presupunerea facuta este falsa!
\( \Rightarrow p\geq 1\Rightarrow\sum^n_{i=1}\frac{1}{n-1+x_{i}}\leq 1. \)
Observatie! Inegalitatea are loc si daca:
\( x_{1}+x_{2}+\dots+x_{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\dots+\frac{1}{x_{n}} \), cu demonstratie asemanatoare.
Aceasta inegalitate a fost propusa de Vasile Cartoaje in revista "American Mathematical Monthly".
Re: Cazul general!
Posted: Fri Jan 02, 2009 6:48 pm
by Marius Mainea
maxim bogdan wrote:
Sa enuntam problema:
Fie \( x_{1},\dots ,x_{n} \) numere reale strict pozitive astfel incat \( x_{1}\dots x_{n}=1. \) Atunci are loc inegalitatea:
\( \sum^n_{i=1}\frac{1}{n-1+x_{i}}\leq 1 \)
Inegalitatea este echivalenta cu
\( \sum{\frac{x_i}{n-1+x_i}\ge 1 \)
Insa din CBS
\( LHS=\sum{\frac{\sqrt{x_i}^2}{n-1+x_i}}\ge \frac{(\sqrt{x_1}+\sqrt{x_2}+...+\sqrt{x_n})^2}{\sum{(x_i+n-1)}}\ge 1\Longleftrightarrow\sum_{1\le i<j\le n}{\sqrt{x_ix_j}}\ge \frac{n(n-1)}{2} \) care este adevarat din inegalitatea AM-GM.