O inegalitate speciala intr-un triunghi.
Posted: Wed Dec 24, 2008 11:56 pm
Fie \( \triangle ABC \) cu \( A=90^{\circ}\ . \) Sa se arate ca \( \frac {a^2}{bc}+\frac {b+c}{a}\ \ge\ 2+\sqrt 2 \) (Crux Mathematicorum).
Generalizare proprie. Fie \( \triangle ABC \). Sa se arate ca daca
\( a=\max\ \{a,b,c\}\ \Longrightarrow\ \frac {b^2+c^2}{bc}+\frac {b+c}{a}\ \ge\ 2+\frac {1}{\sin\frac A2}\cdot\sqrt {1+\left(\frac {b-c}{2a}\right)^2}\ . \)
Generalizare proprie. Fie \( \triangle ABC \). Sa se arate ca daca
\( a=\max\ \{a,b,c\}\ \Longrightarrow\ \frac {b^2+c^2}{bc}+\frac {b+c}{a}\ \ge\ 2+\frac {1}{\sin\frac A2}\cdot\sqrt {1+\left(\frac {b-c}{2a}\right)^2}\ . \)