Page 1 of 1

Inegalitate simetrica in n variabile.

Posted: Mon Dec 22, 2008 11:31 pm
by Virgil Nicula
Fie numarul natural \( n\ge 3 \) si numerele reale pozitive \( x_k\ ,\ k\in\overline {1,n} \) pentru care notam

\( 2s=\sum_{k=1}^nx_k \) . Sa se arate ca \( s\ >\ \max_{1\le k\le n}\ x_k\ \Longrightarrow\ \prod_{k=1}^n\frac {(n-3)s+x_k}{s-x_k}\ \ge\ (n-1)^n \) .


Cazuri particulare.

\( \odot\ (n=3) \) . Intr-un triunghi \( ABC \) exista inegalitatea \( \frac {abc}{(p-a)(p-b)(p-c)}\ \ge\ 8 \) .

\( \odot\ (n=4) \) . Intr-un patrulater convex \( ABCD \) exista inegalitatea \( \prod\ \frac {p+a}{p-a}\ \ge\ 81 \) .

Posted: Wed Dec 24, 2008 11:47 am
by Marius Mainea
Notam \( s-x_k=a_k, k=\overline{1,n} \) si de aici prin sumare \( (n-2)s=\sum{a_k} \) sau \( x_1+x_2+...+x_n=\frac{2}{n-2}(a_1+a_2+...+a_n) \) (1)

Scazand din (1) fiecare din egalitatile

\( x1+x_2+...-_k+...+x_n=2a_k , k=\overline{1,n} \) obtinem \( x_k=\sum_{i\neq k}{a_i}, k=\overline{1,n} \) ,

deci inegalitatea este echivalenta cu

\( \prod_{k=1}^n{(a_1+a_2+..+a_{k-1}+a_{k+1}+...+a_n)}\ge (n-1)^na_1\cdot a_2...\cdot a_n \) care rezulta imediat din inegalitatea mediilor,

\( \prod_{k=1}^n{(a_1+a_2+..+a_{k-1}+a_{k+1}+...+a_n)}\ge \prod_{k=1}^n{\sqrt[n-1]{a_1a_2..a_{k-1}a_{k+1}...a_n}= (n-1)^na_1\cdot a_2...\cdot a_n \)