Inegalitate simetrica in n variabile.
Posted: Mon Dec 22, 2008 11:31 pm
Fie numarul natural \( n\ge 3 \) si numerele reale pozitive \( x_k\ ,\ k\in\overline {1,n} \) pentru care notam
\( 2s=\sum_{k=1}^nx_k \) . Sa se arate ca \( s\ >\ \max_{1\le k\le n}\ x_k\ \Longrightarrow\ \prod_{k=1}^n\frac {(n-3)s+x_k}{s-x_k}\ \ge\ (n-1)^n \) .
Cazuri particulare.
\( \odot\ (n=3) \) . Intr-un triunghi \( ABC \) exista inegalitatea \( \frac {abc}{(p-a)(p-b)(p-c)}\ \ge\ 8 \) .
\( \odot\ (n=4) \) . Intr-un patrulater convex \( ABCD \) exista inegalitatea \( \prod\ \frac {p+a}{p-a}\ \ge\ 81 \) .
\( 2s=\sum_{k=1}^nx_k \) . Sa se arate ca \( s\ >\ \max_{1\le k\le n}\ x_k\ \Longrightarrow\ \prod_{k=1}^n\frac {(n-3)s+x_k}{s-x_k}\ \ge\ (n-1)^n \) .
Cazuri particulare.
\( \odot\ (n=3) \) . Intr-un triunghi \( ABC \) exista inegalitatea \( \frac {abc}{(p-a)(p-b)(p-c)}\ \ge\ 8 \) .
\( \odot\ (n=4) \) . Intr-un patrulater convex \( ABCD \) exista inegalitatea \( \prod\ \frac {p+a}{p-a}\ \ge\ 81 \) .