Page 1 of 1

a, b, c, d

Posted: Sun Dec 21, 2008 11:50 am
by moldo
1. Se dau numerele complexe \( a,\ b,\ c,\ d \) cu proprietatea ca \( a+b+c+d=0 \). Sa se dem ca:

\( a^3+b^3+c^3+d^3=3(abc+bcd+cda+dab) \).

2. Demonstrati ca expresia

\( 2(a^4+b^4+c^4+d^4)-( a^2+b^2+c^2+d^2)^2+8abcd \)

este divizibila cu \( a+b+c+d \), a, b, c, d din Z


folosind relatiile lui Viete.

Posted: Wed Dec 24, 2008 11:57 am
by Marius Mainea
1) Folosim relatia (Newton) \( a^3+b^3+c^3+d^3-(a^2+b^2+c^2+d^2)(a+b+c+d)+(a+b+c+d)(ab+ac+ad+bc+bd+cd)-3(abc+bcd+cda+dab)=0 \)

2) Deasemenea


\( a^4+b^4+c^4+d^4-(a^3+b^3+c^3+d^3)(a+b+c+d)+(a^2+b^2+c^2+d^2)(ab+ac+ad+bc+bd+cd)-(a+b+c+d)(abc+bcd+cda+dab)+4abcd=0 \) sau

\( 2\sum{a^4}-2\sum{a^2}\sum{ab}+8abcd=\mathcal{M}(a+b+c+d) \) sau

\( 2\sum{a^4-\sum{a^2}((\sum a)^2-\sum{a^2})+8abcd=\mathcal{M}(a+b+c+d) \)

sau concluzia problemei.