Page 1 of 1
Inegalitate conditionata 4
Posted: Fri Dec 19, 2008 10:22 pm
by Marius Mainea
Fie a,b,c>0 astfel incat a+b+c=1. Sa se arate ca:
\( (ab+bc+ca)(\frac{a}{b^2+b}+\frac{b}{c^2+c}+\frac{c}{a^2+a})\ge \frac{3}{4}. \)
Generalizare!
Posted: Sat Jan 24, 2009 12:58 pm
by maxim bogdan
Are loc inegalitatea mai generala:
Fie \( a_{1}, a_{2},\dots, a_{n} \) numere reale pozitive cu proprietatea ca: \( a_{1}+a_{2}+\dots+a_{n}=1. \) Demonstrati ca:
\( (a_{1}a_{2}+a_{2}a_{3}+\dots+a_{n-1}a_{n}+a_{n}a_{1})(\frac{a_{1}}{a_{2}^2+a_{2}}+\frac{a_{2}}{a_{3}^2+a_{3}}+\dots+\frac{a_{n-1}}{a_{n}^2+a_{n}}+\frac{a_{n}}{a_{1}^2+a_{1}})\geq\frac{n}{n+1}. \)
MOSP 2007
Posted: Sat Feb 07, 2009 5:30 pm
by maxim bogdan
E discutata
aici. Vezi post #
\( 4 \).