Page 1 of 1
Trei multimi
Posted: Tue Dec 09, 2008 11:25 pm
by alex2008
Daca \( M \) este o multime finita vom nota cu \( n(M) \) numarul elementelor sale . Fie \( A,B,C \) trei multimi . Dovediti ca :
\( n(A\cup B\cup C)=n(A)+n(B)+n(C)-[n(A\cap B)+n(A\cap C)+n(B\cap C)]+n(A\cap B\cap C) \)
Posted: Tue Dec 09, 2008 11:41 pm
by Laurian Filip
Desenand cele 3 multimi ca niste diagramele van euler, afirmatia este evidenta.
In desen am notat cu
\( M1,M2,M3,M4 \) multimile de puncte situate in cea mai mica suprafata inchisa care le contine.
\( n(A\cup B \cup C)=n(A)+n(B)+n(C)-n(M1)-n(M2)-n(M3)-2n(M4)=n(A)+n(B)+n(C)-[(n(M1)+n(M4)) + (n(M2)+n(M4))+(n(M3)+n(M4))]+n(M4)=n(A)+n(B)+n(C)-[n(A\cap B)+n(A\cap C)+n(B\cap C)]+n(A\cap B\cap C) \)
Posted: Wed Dec 10, 2008 7:09 am
by alex2008
Eu cred ca merge si astfel :
Folosind proprietatea \( n(A\cup B)=n(A)+n(B)-n(A\cap B) \)
Deci\( n[(A\cup B)\cup C]=n(A\cup B)+n(C)-n[(A\cup B)\cap C]=n(A)+n(B)-n(A\cap B)+n(C)-n[(A\cap C)\cup (A\cap B)]=n(A)+n(B)+n(C)-n(A\cap B)-n(A\cap C)-n(A\cap B)+n(A\cap B\cap C) \) , ceea ce trebuia demonstrat .