Problema Shortlist ONM 2008
Posted: Tue Dec 09, 2008 12:17 pm
Fie \( n\in \mathbb{N}, n\ge{2} \) si \( a_1,a_2,...,a_{2n} \) numere reale strict pozitive astfel incat \( a_1+a_2+...+a_{2n}=s \). Demonstrati inegalitatea:
\( \frac{a_1}{s+a_{n+1} - a_1}+...+\frac{a_n}{s+a_{2n}-a_n}+\frac{a_{n+1}}{s+a_1-a_{n+1}}+...+\frac{a_{2n}}{s+a_n-a_{2n}}\ge1 \)
\( \frac{a_1}{s+a_{n+1} - a_1}+...+\frac{a_n}{s+a_{2n}-a_n}+\frac{a_{n+1}}{s+a_1-a_{n+1}}+...+\frac{a_{2n}}{s+a_n-a_{2n}}\ge1 \)