Page 1 of 1
Aplicatie la axa radicala a doua cercuri.
Posted: Fri Dec 05, 2008 9:11 pm
by Virgil Nicula
Fie \( ABCD \) un trapez, \( AB\ \parallel\ CD \) , astfel incat \( \angle CDB\equiv\angle CAD \) .
Notam \( I\ \in\ AC\cap BD \) si centrul \( O \) al cercului circumscris triunghiului \( AIB \) .
Fie un punct \( M\in AD \) . Sa se arate ca \( CM\ \perp\ OD\ \Longleftrightarrow\ MA\ =\ MD \) .
Solutie!
Posted: Sat Dec 06, 2008 11:10 am
by maxim bogdan
Fie \( E \)-mijlocul segmentului \( [OD] \), si \( R \) raza cercului circumscris \( \triangle ABC. \) Cum \( \angle{CDB}\equiv\angle{DBA}\equiv\angle{CAD} \) rezulta ca \( AD \) este tangenta la cercul \( C_{AIB} \). Vrem sa demonstram ca patrulaterul \( MECD \) este ortodiagonal, adica: \( ME^2+DC^2=MD^2+CE^2. \)
Relatia este echivalenta cu: \( \frac{AO^2}{4}+DC^2=\frac{AD^2}{4}+ CE^2| 4 \)
\( \Leftrightarrow R^2+4CD^2=AD^2+4CE^2=AD^2+2OC^2+2CD^2-OD^2 \)(Teorema medianei).
\( \Leftrightarrow (OD^2-R^2)+2CD^2=AD^2+2(OC^2-R^2)(*). \) Din Teorema lui Pitagora in \( \triangle OAD \) dreptunghic in \( A \) obtinem ca : \( OD^2-R^2=AD^2. \)
Deci \( (*)\Leftrightarrow OC^2-R^2=CD^2 \).
Evident \( OC^2-R^2=\rho_{C_{AIB}}(C)=CICA. \) Mai ramane sa demonstram ca: \( CI CA=CD^2 \).
Se arata usor ca: \( \triangle ADC\sim\triangle DIC \). De aici obtinem ca:
\( \frac{AC}{CD}=\frac{DC}{CI}\Rightarrow CICA=CD^2. \)
\( \Rightarrow CM\perp OD. \)