Set de probleme cu nivel sporit de dificultate
Posted: Tue Nov 25, 2008 10:58 pm
1. Daca \( \frac{1}{a+2001}+\frac{1}{2b+2001}+\frac{1}{3c+2001}=\frac{3}{2002} \), calculati \( \frac{a}{a+2001}+\frac{2b}{2b+2001}+\frac{3c}{3c+2001} \).
2. Fie\( P={1,2,3,...,2003} \) si \( a,b,c,x,y \in P \) astfel incat:
\( \frac{a}{a+d}+\frac{b}{b+d}+\frac{c}{c+d}=x \) si \( \frac{d}{a+d}+\frac{b}{b+d}+\frac{d}{c+d}=y \). Calculati \( x \cdot y \)
2. Fie\( P={1,2,3,...,2003} \) si \( a,b,c,x,y \in P \) astfel incat:
\( \frac{a}{a+d}+\frac{b}{b+d}+\frac{c}{c+d}=x \) si \( \frac{d}{a+d}+\frac{b}{b+d}+\frac{d}{c+d}=y \). Calculati \( x \cdot y \)