Concursul "Congruente", problema 2
Posted: Sun Nov 09, 2008 11:15 pm
a) Sa se arate ca \( \frac{1}{3}<\frac{1}{2k+1}+\frac{1}{2k+2}+...+\frac{1}{3k}<\frac{1}{2} \), oricare ar fi \( k\in \mathbb{N}, k\geq 2 \).
b) Fie \( n \in \mathbb{N}, n\geq 2 \). Demonstrati ca \( \frac{7}{12}< \frac{1}{2n+1}+\frac{1}{2n+2}+...+\frac{1}{4n}<\frac{5}{6} \).
Valentin Damian, Braila
b) Fie \( n \in \mathbb{N}, n\geq 2 \). Demonstrati ca \( \frac{7}{12}< \frac{1}{2n+1}+\frac{1}{2n+2}+...+\frac{1}{4n}<\frac{5}{6} \).
Valentin Damian, Braila