Page 1 of 1

Cristian Calude, proba pe echipe, R.IV, P.I

Posted: Tue Nov 04, 2008 11:56 pm
by Laurian Filip
Sa se rezolve in \( \mathbb{R} \) ecuatia: \( (x+2a-3b)^3+(2x-3a+b)^3=(3x-a-2b)^3 \), \( a,b \) fiind numere reale date.

Posted: Thu Nov 06, 2008 3:15 pm
by abc
Notam \( c=x+2a-3b,\ d=2x-3a+b. \) Rezulta \( c+d= 3x-a-2b \). Ecuatia va fi de forma

\( c^3+d^3=(c+d)^3 \)
\( 3cd(c+d)=0 \)

Sunt trei solutii:
\( x_1=-2a+3b \)
\( x_2=\frac{3a-b}{2} \)
\( x_3=\frac{a+2b}{3} \)