Page 1 of 1

Cristian Calude, proba pe echipe, R.II, P.I

Posted: Tue Nov 04, 2008 11:51 pm
by Laurian Filip
Sa se rezolve in multimea numerelor reale, ecuatia: \( \left[ \frac{x}{2}\right]+\left[ \frac{x}{3}\right]+\left[ \frac{x}{4}\right]=x \)

Posted: Thu Jun 25, 2009 11:35 am
by alex2008
Fie \( f(x) = \left[\frac {x}{2}\right] + \left[\frac {x}{3}\right] + \left[\frac {x}{4}\right] \) si a cel mai mic intreg pozitiv astfel incat \( x = 12k + a\ ,\ k\in \mathbb{N} \)

Ecuatia devine \( k = a - f(a)\ ,\ 12 \) fiind cel mai mic multiplu comun al numerelor \( 2,3,4 \)

Pentru \( a = 0,1,2,...,11\ ,\ a - f(a) = 0,1,1,1,0,1,0,1,0,0,0,1 \)

De aici rezulta \( x \in\{ 0,13,14,15,4,17,6,19,8,9,10,23\} \).