Page 1 of 1

Teorema impartirii cu rest (O.J.)

Posted: Sun Nov 02, 2008 1:59 pm
by Marcelina Popa
Gasiti numarul \( \overline{xyzt} \), stiind ca daca-l impartim la numarul \( \overline{yzt} \) obtinem catul \( x+1 \) si restul \( x+2 \).
(OJ - Mehedinti)

Posted: Thu Nov 06, 2008 7:27 am
by alex2008
Aplicam teorema impartirii cu rest si avem :

\( \overline{xyzt}=\overline{yzt}\cdot(x+1)+x+2 \)

Scriem numerele in baza 10 :

\( 1000x+100y+10z+t=100xy+100y+10xz+10z+tx+t+x+2 \)

\( 1000x=100xy+10xz+tx+x+2 \)

\( x(999-\overline{yzt})=2 \)

Dar x natural =>x=1 sau x=2

x=1 , rezulta\( \overline{yzt}=997 \) , rezulta \( \overline{xyzt}=1997 \)

x=2 , rezulta \( \overline{yzt}=998 \) , rezulta \( \overline{xyzt}=2998 \)