Page 1 of 1

Doua probleme de la Arhimede, faza I, 2007

Posted: Fri Oct 31, 2008 7:49 pm
by Claudiu Mindrila
\( 1. \)
Sa se arate ca daca numerele reale \( a,b \) satisfac relatia \( a(a-1)=b(1-b) \), atunci \( a,b \in \left [\frac{1-\sqrt{2}}{2}, \frac{1+\sqrt{2}}{2} \right ] \).

\( 2. \)
Fie \( a,b,c,m,n,p \in \mathbb{R} \) astfel incat \( a<b<c \) si \( m<n<p \). Sa se arate ca \( an+bp+cm< am+bn+cp. \)
Liviu Oprisescu

Posted: Fri Oct 31, 2008 8:19 pm
by Marius Mainea
1) \( (a-\frac{1}{2})^2+(b-\frac{1}{2})^2=\frac{1}{2}
\)

De aici \( (a-\frac{1}{2})^2\le \frac{1}{2} \)

\( |a-\frac{1}{2}|\le \frac{\sqrt{2}}{2} \) si de aici concluzia.

2) Inegalitatea rearanjamentelor.

Inegalitatea este echivalenta cu \( 0<(b-c)(m-p)+(a-b)(m-n) \)