Un sir exprimat printr-o integrala definita
Posted: Thu Oct 30, 2008 4:46 pm
\( a_n=\int_0^1x^{np}(x^p+1)^n\mathrm {dx} \) , unde \( p\in\mathbb N^* \) \( \ \Longrightarrow\ \lim_{n\to\infty}\ \frac {n}{2^n}\cdot a_n=\frac {2}{3p} \) .
Cazuri particulare :
\( p:=1\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {n}{2^n}\cdot\sum_{k=0}^n\frac {C_n^k}{n+k+1}=\frac 23 \) ;
\( p:=2\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {n}{2^n}\cdot\sum_{k=0}^n\frac {C_n^k}{2n+2k+1}=\frac 13 \) .
Cazuri particulare :
\( p:=1\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {n}{2^n}\cdot\sum_{k=0}^n\frac {C_n^k}{n+k+1}=\frac 23 \) ;
\( p:=2\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {n}{2^n}\cdot\sum_{k=0}^n\frac {C_n^k}{2n+2k+1}=\frac 13 \) .