Page 1 of 1
Inegalitate
Posted: Thu Oct 23, 2008 5:27 pm
by Claudiu Mindrila
Daca \( x,y\ge 0 \) si \( x^2+y^3\ge x^3+y^4 \) , atunci \( x^3+y^3\le 2 \).
Posted: Fri Oct 24, 2008 9:30 pm
by Claudiu Mindrila
Marius Mainea wrote:Incearca asa:
Daca \( x,y\ge 0 \) si \( x^2+y^3\ge x^3+y^4 \) , atunci \( x^3+y^3\le 2 \)
Intr-adevar, acesta era enuntul corect. Sper sa se inteleaga solutia din urmatoarea schema:
\( \begin{cases}
x^{3}+x\geq2x^{2}\\
y^{4}+y^{2}\geq2y^{3}\end{cases}\Longrightarrow\begin{cases}
x^{3}+y^{4}+x+y^{2}\geq2\left(x^{2}+y^{3}\right)\\
\text{dar}\\
x^{2}+x^{3}\geq x^{3}+y^{4}\end{cases}\Longrightarrow x+y^{2}\geq x^{2}+y^{3}(1). \)
Pe de alta parte
\( \begin{cases}
x^{2}+1\geq2x\\
y^{4}+1\geq2y^{2}\end{cases}\Longrightarrow\begin{cases}
x^{2}+y^{4}+2\geq2\left(x+y^{2}\right)\\
x^{2}+y^{3}\geq x^{3}+y^{4}\\
x+y^{2}\geq x^{2}+y^{3}\end{cases}\Longrightarrow x^{2}+y^{4}+2\geq x+y^{2}+x^{2}+y^{3}\geq x^{2}+y^{3}+x^{3}+y^{4} \).
Rezulta cerinta problemei.