Page 1 of 1

Suma simpla

Posted: Thu Oct 23, 2008 3:57 pm
by mihai722
Sa se calculeze suma din \( \frac{1*1!+2*2!+3*3!+...+n!*n}{-1+(n+1)!} \).

Multumesc.

Posted: Thu Oct 23, 2008 6:01 pm
by Radu Titiu
\( \sum_{k=1}^n k\cdot k! = \sum_{k=1}^n (k+1-1)\cdot k! =\sum_{k=1}^n (k+1)!-k! =(n+1)!-1 \).Deci valoarea raportului este 1.

Posted: Thu Oct 23, 2008 6:02 pm
by mihai722
thank you, come again.

Posted: Thu Oct 23, 2008 6:17 pm
by mihai722
Nu e nici o eroare? cum poate \( \sum_{k=1}^n (k+1)!-k! =(n+1)!-1 \) sa fie adevarata? daca pui in loc de \( k \), \( n \) iese \( (n+1)!-n! \) eu nu vad cum poate sa iasa \( (n+1)!-1 \) ?

Posted: Thu Oct 23, 2008 6:27 pm
by Bogdan Cebere
Poate e mai clar asa:
\( \sum_{k=1}^{n}\ k! k=\sum_{k=1}^{n}\ k! (k+1-1)=\sum_{k=1}^{n}\ (k+1)!-\sum_{k=1}^{n}\ k!=(2!+3!+4!+ \dots +n!+(n+1)!)-(1!+2!+3!+ \dots +n!)=(n+1)!-1. \).
Se cam suprapune cu topicul acesta.