Page 1 of 1

Un cub, 2008 cubulete si o inegalitate

Posted: Mon Sep 15, 2008 7:27 pm
by Claudiu Mindrila
Intr-un cub de latura \( 1 \) se afla \( 2008 \) cubulete, oricare doua avand interioarele disjuncte. Demonstrati ca printre ele se afla \( 8 \) care au suma lungimilor muchiilor mai mica sau egala cu \( \frac{4}{\sqrt[3]251} \).

Dumitru Barac, Concursul "Gheorghe Lazar", Sibiu, 2008

Posted: Thu Dec 31, 2009 12:40 am
by Andi Brojbeanu
Notam cu \( a_1, a_2, a_3, ......, a_{2008} \) lungimile muchiilor celor 2008 cubulete. Putem presupune fara a restrange generalitatea problemei ca \( a_1\le a_2\le ......\le a_{2008} \) si ca \( a_1, a_2, ....., a_8 \) sunt lungimile muchiilor celor 8 cubulete cautate.
Sa demonstram inegalitatea \( \frac{a_1+a_2+....+a_8}{8}\le\sqrt[3]{\frac{a_1^3+a_2^3+....a_8^3}{8}} \) . Aceasta este echivalenta cu: \( (\sum{a_1})^3\le 64(\sum{a_1^3}) \). Din inegalitatea lui Cebisev obtinem: \( 8\cdot 8\cdot (\sum{a_1^3})=8\cdot 8\cdot (\sum a_1\cdot a_1^2)\ge8\cdot (\sum{a_1})\cdot (a_1^2) \). Atunci ramane de demonstrat ca \( 8\cdot (\sum{a_1})\cdot (\sum{a_1^2})\ge(\sum{a_1^3}) \) sau \( 8\cdot (\sum{a_1^2})\ge(\sum{a_1})^2 \). Ultima ineglitate rezulta din inegalitatea C.B.S.
Am obtinut, deci, ca \( a_1+a_2+....+a_8\le 4 \sqrt[3]{a_1^3+a_2^3+....+a_8^3} \).
Dar \( a_1^3+a_2^3+....+a_8^3=\frac{a_1^3+a_2^3+....+a_8^3}{251}\cdot 251\le \frac{a_1^3+a_2^3+....+a_8^3}{251}+\frac{a_9^3+a_{10}^3+....+a_{16}^3}{251}+....+\frac{a_{2001}^3+a_{2002}^3+....+a_{2008}^3}{251}=\frac{a_1^3+a_2^3+....+a_{2008}^3}{251} \)
Din ipoteza deducem ca suma volumelor celor 2008 cubulete este mai mica sau egala cu volumul cubului de latura \( 1 \).
Asadar \( a_1+a_2+....+a_8\le 4\sqrt[3]{\frac{a_1^3+a_2^3+....+a_{2008}^3}{251}}\le 4\cdot \sqrt[3]{\frac{1}{251}}=\frac{4}{\sqrt[3]{251}} \).