Problema cu inegalitate integrala
Posted: Thu Aug 07, 2008 9:38 pm
Fie \( f:[0,1]\to \mathbb{R} \) o functie continua astfel incat pentru orice \( x \in [0,1] \) avem
\( \int_x^1f(t){\rm d}t\geq \frac{1-x^2}{2} \).
Demonstrati ca \( \int_0^1f^2(t){\rm d}t\geq \frac{1}{3} \).
IMC 1995
\( \int_x^1f(t){\rm d}t\geq \frac{1-x^2}{2} \).
Demonstrati ca \( \int_0^1f^2(t){\rm d}t\geq \frac{1}{3} \).
IMC 1995