Page 1 of 1
Inegalitate atipica 1
Posted: Fri Aug 01, 2008 7:54 pm
by Marius Mainea
Fie \( a,b,c\in[-3,\infty) \) astfel incat \( a^3+b^3+c^3=0 \). Aratati ca \( a+b+c\le 3 \).
Poate avea loc egalitatea?
Posted: Sat Aug 02, 2008 2:52 pm
by Claudiu Mindrila
Sa remarcam ca \( a^2+\frac{9}{4} \geq 3a \Rightarrow a^2-3a+\frac{9}{4} \geq 0 \). Deducem ca \( (a-3)(a^2-3a+\frac{9}{4}) \geq 0 \Leftrightarrow a^3+\frac{81}{4} \geq \frac{27}{4}a \). Prin sumarea inegalitatilor analoage avem ca: \( \sum a^3+\frac{243}{4}\geq \frac{21}{4} \sum a \), adica
\( \sum a \leq \frac{243}{4} \cdot \frac{4}{81}=3 \), ceea ce trebuia aratat.