O inegalitate trigonometrica "mai tare".
Posted: Mon Jul 14, 2008 4:29 am
Va ofer o inegalitate "mai tare" decat cunoscuta inegalitate \( \sum\cos A\le\frac 32 \) in orice \( ABC \) :
\( \underline {\overline {\left\|\ 12\cdot (\cos A + \cos B + \cos C)\le 15 + \cos (A - B) + \cos (B - C) + \cos (C - A)\ \right\|}}\ \le\ 18 \) .
Altfel spus, \( \underline {\overline {\left\|\ \frac {3(4r-R)}{R}\ \le\ \cos (A-B)+\cos (B-C)+\cos (C-A)\ \right\|}}\ \le\ 3 \) deoarece \( \sum\cos A=1+\frac rR \) .
\( \underline {\overline {\left\|\ 12\cdot (\cos A + \cos B + \cos C)\le 15 + \cos (A - B) + \cos (B - C) + \cos (C - A)\ \right\|}}\ \le\ 18 \) .
Altfel spus, \( \underline {\overline {\left\|\ \frac {3(4r-R)}{R}\ \le\ \cos (A-B)+\cos (B-C)+\cos (C-A)\ \right\|}}\ \le\ 3 \) deoarece \( \sum\cos A=1+\frac rR \) .