Inegalitate cu logaritmi conditionata
Posted: Sat Jul 12, 2008 8:37 pm
Daca \( a,b,c>0 \) si \( a+b+c=1 \) aratati ca:
\( \frac{a^2}{\log_a(a^2+b^2+c^2)}+\frac{b^2}{\log_b(a^2+b^2+c^2)}+\frac{c^2}{\log_c(a^2+b^2+c^2)}\geq \log_{abc}(a^2+b^2+c^2) \)
\( \frac{a^2}{\log_a(a^2+b^2+c^2)}+\frac{b^2}{\log_b(a^2+b^2+c^2)}+\frac{c^2}{\log_c(a^2+b^2+c^2)}\geq \log_{abc}(a^2+b^2+c^2) \)