Page 1 of 1

Minim expresie

Posted: Sat Jul 12, 2008 4:31 pm
by quodvide
Care este minimul expresiei

\( E=\sqrt{4x^2+28x+85}+\sqrt{4x^2-28x+113} \)

Admitere Politehnica Bucuresti 2005

Posted: Sat Jul 12, 2008 5:49 pm
by Radu Titiu
Sa observam ca \( E=\sqrt{(2x+7)^2+36}+\sqrt{(-2x+7)^2+64}. \)

Aceasta scriere ne poate sugera sa consideram vectorii:

\( v_1=(2x+7,\ 6) \) si \( v_2 = (-2x+7,\ 8 ) \)

si atunci \( E=|v_1|+|v_2| \).

Din inegalitatea triunghiului avem \( |v_1|+|v_2| \geq |v_1+v_2|=14\sqrt{2} \). Egalitatea are loc daca si numai daca vectorii sunt coliniari, ceea ce e echivalent cu exista \( a \) scalar a.i. \( v_1=av_2 \), de unde rezulta \( a=\frac{3}{4} \) si \( x=-\frac{1}{2} \).

Posted: Sat Jul 12, 2008 6:43 pm
by Marius Mainea
Solutia 2 (cls a XI-a).

Se deriveaza, se stabilesc intervalele de monotonie, punctele de extrem.