Page 1 of 1

o ecuatie exponentiala

Posted: Wed Sep 26, 2007 6:37 pm
by Cezar Lupu
Fie \( a, b>0 \) astfel incat \( a^b+b^a=1+ab \). Sa se arate ca sau \( a=1 \) sau \( b=1 \).

L. Panaitopol

Posted: Thu Sep 27, 2007 3:29 am
by Cezar Lupu
Daca nici unul din numerele \( a, b \) nu este \( 1 \) atunci avem urmatoarele 3 posibilitati:

1) \( a, b>1 \)
2) \( a\in (0,1) \) si \( b>1 \)
3) \( a,b\in (0,1) \).

Ar mai fi si cazul 4), anume: \( b\in (0,1) \) si \( a>1 \), dar datorita simetriei ecuatiei noastre este acelasi lucru ca si in cazul 2). Acum sa analizam pe rand fiecare din cele 3 cazuri:

1) \( a, b>1 \). Folosind inegalitatea lui Bernoulli, avem
\( a^b=(1+(a-1))^b\geq 1+b(a-1)=1+ab-b \). Analog, vom obtine
\( b^a\geq 1+ba-a \). Prin adunare, vom obtine ca
\( a^b+b^a\geq 2+2ab-a-b>1+ab \).

2) \( a\in (0, 1) \) si \( b>1 \). Din inegalitatea lui Bernoulli, avem
\( b^a=(1+(b-1))^{a}<1+a(b-1) \). Cum \( a^b<a \) rezulta ca
\( a^b+b^a< 1+ab-a+a=1+ab \).

3) \( a, b\in (0,1) \). Vom folosi din nou inegalitatea lui Bernoulli. Astfel, avem:
\( \left(\frac{1}{a}\right)^{b}=\left(1+\left(\frac{1}{a}-1\right)\right)^{b}<1+b\left(\frac{1}{a}-1\right)=\frac{a+b-ab}{a} \).
Rezulta de aici ca \( a^b >\frac{a}{a+b-ab} \). Procedand analog, vom obtine \( b^a >\frac{b}{a+b-ab} \). Astfel, prin adunare vom avea
\( a^b+b^a >\frac{a}{a+b-ab}+\frac{b}{a+b-ab}>1+ab
\)
.

Concluzia decurge imediat. :wink: