O relatie metrica intr-un triunghi
Posted: Mon Jul 07, 2008 2:14 am
\( \left\|\begin{array}{c}
\triangle\ ABC\\\\
\ = = = = = = = = = = = = = = = = =\ \\\\
\ D\in BC\ \ ,\ \ E\in CA\ \ ,\ \ F\in AB\ \\\\
\ P\in AD\cap CF\ \ ,\ \ R\in AD\cap BE\ \\\\
\ \frac {\overline {AE}}{\overline {EC}}=m\ \ ,\ \ \frac {\overline {AF}}{\overline {FB}}=n\ \end{array}\right\|\ \Longrightarrow\ \frac {m}{\overline {AR}} + \frac {n}{\overline {AP}}=\frac {1+m+n}{\overline {AD}} \) .
Caz particular : \( m=n=1\ \Longrightarrow\ \frac {1}{\overline {AR}} + \frac {1}{\overline {AP}}=\frac {3}{\overline {AD}} \) .
\triangle\ ABC\\\\
\ = = = = = = = = = = = = = = = = =\ \\\\
\ D\in BC\ \ ,\ \ E\in CA\ \ ,\ \ F\in AB\ \\\\
\ P\in AD\cap CF\ \ ,\ \ R\in AD\cap BE\ \\\\
\ \frac {\overline {AE}}{\overline {EC}}=m\ \ ,\ \ \frac {\overline {AF}}{\overline {FB}}=n\ \end{array}\right\|\ \Longrightarrow\ \frac {m}{\overline {AR}} + \frac {n}{\overline {AP}}=\frac {1+m+n}{\overline {AD}} \) .
Caz particular : \( m=n=1\ \Longrightarrow\ \frac {1}{\overline {AR}} + \frac {1}{\overline {AP}}=\frac {3}{\overline {AD}} \) .