Page 1 of 1

Serie convergenta de numere complexe implica limita 0

Posted: Wed Jun 25, 2008 5:09 pm
by Cezar Lupu
Fie \( (z_{n})_{n\in\mathbb{N}^{*}} \) un sir de numere complexe. Sa se arate ca daca seria \( \sum_{n=1}^{\infty}\frac{z_{n}}{n} \) este convergenta, atunci \( \lim_{n\to\infty}\frac{z_{1}+z_{2}+\ldots +z_{n}}{n}=0 \).

Posted: Tue Jul 22, 2008 5:40 pm
by Ciprian Oprisa
Fie \( s_n=\sum\limits_{k=1}^n \frac{z_k}{k} \). Cum sirul \( (s_n) \) e convergent, iar numerele complexe formează un spaţiu metric complet, \( (s_n) \) e şir fundamental, deci pentru orice \( \epsilon >0 \) \( \exists N_{\epsilon} \) astfel încât pentru orice \( n>N_{\epsilon} \), \( \sum\limits_{k=n}^{n+p}\frac{z_k}{k} < \epsilon \), \( \forall p>0 \) \( \Rightarrow \sum\limits_{k=n}^{n+p}\frac{z_k}{n+p} < \epsilon \).
Fie acum şirul \( u_n=\frac{z_1+z_2+\ldots+z_n}{n} \). \( u_{n+p}=\frac{z_1+z_2+\ldots+z_{n+p}}{n+p}=\frac{z_1+z_2+\ldots+z_{n-1}}{n+p}+\frac{z_n+\ldots+z_{n+p}}{n+p} < \frac{z_1+z_2+\ldots+z_{n-1}}{n+p}+\epsilon \).
Trecem la limită după \( p \), deci \( \lim\limits_{p\rightarrow\infty}u_{n+p}\leq \epsilon \), \( \forall \epsilon>0 \), deci \( \lim\limits_{n\rightarrow\infty}u_{n}=0 \).

Posted: Tue Nov 04, 2008 4:35 pm
by pevcipierdut
Tu cum faci sa compari reale cu complexe?poate lipsesc ceva module pe acolo,mai uita te la solutie.