Page 1 of 1

Sir convergent la 0

Posted: Tue Jun 24, 2008 9:54 pm
by Marius Mainea
Fie a>0 si \( (x_n)_n \) un sir definit prin \( x_1=a \) si

\( x_{n+1}=\frac{x_1}{n+1}+\frac{x_2}{n+2}+....+\frac{x_n}{n+n}, \) \( n\geq 1 \)

Sa se arate ca sirul converge la 0.

Radu Gologan, Shortlist ONM 2005

Posted: Tue Jun 24, 2008 11:16 pm
by Beniamin Bogosel
Prin inductie sirul este descrescator si \( x_{n+1}\leq \frac{n}{n+1}x_n \). Deci sirul \( (nx_n) \) este descrescator si marginit, adica are limita. De aici neaparat \( x_n\to 0 \).