Sir convergent la 0
Posted: Tue Jun 24, 2008 9:54 pm
Fie a>0 si \( (x_n)_n \) un sir definit prin \( x_1=a \) si
\( x_{n+1}=\frac{x_1}{n+1}+\frac{x_2}{n+2}+....+\frac{x_n}{n+n}, \) \( n\geq 1 \)
Sa se arate ca sirul converge la 0.
Radu Gologan, Shortlist ONM 2005
\( x_{n+1}=\frac{x_1}{n+1}+\frac{x_2}{n+2}+....+\frac{x_n}{n+n}, \) \( n\geq 1 \)
Sa se arate ca sirul converge la 0.
Radu Gologan, Shortlist ONM 2005