Page 1 of 1

Inegalitatea 2, trigonometrica, cu sinA/2 si cos A/2

Posted: Sat Oct 06, 2007 3:58 pm
by Cezar Lupu
Sa se arate ca in orice triunghi \( ABC \) este adevarata inegalitatea


\( r\left(\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}\right)\leq R\left(\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}\right). \)

Posted: Fri Aug 29, 2008 4:38 pm
by maxim bogdan
Se poate demonstra inegalitatea mai tare:

\( \frac{\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}}{\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}}<2\le \frac{R}{r} \)

Se considera un triunghi \( ABC \) si I centrul cercului inscris acestuia.
Vom folosi inegalitatea \( AI+BI>AB \)
In triunghiul ABI din teorema sinusului avem: \( \frac{BI}{\sin\frac{A}{2}}=\frac{AI}{\sin\frac{B}{2}}=\frac{AB}{\sin(\frac{\pi}{2}+\frac{C}{2})}=\frac{AB}{\cos\frac{C}{2}}=\frac{BI+AI}{\sin\frac{A}{2}+\sin\frac{B}{2}}>\frac{AB}{\sin\frac{A}{2}+\sin\frac{B}{2}} \)

Deci \( \sin\frac{A}{2}+\sin\frac{B}{2}>\cos\frac{C}{2} \).De aici e clar