Page 1 of 1

Inegalitate conditionata

Posted: Tue Jun 17, 2008 11:34 am
by Beniamin Bogosel
Fie \( a,b,c \geq 0 \) astfel incat \( \frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=2 \).
Demonstrati ca \( ab+bc+ca\leq \frac{3}{2} \).

Posted: Tue Jun 17, 2008 11:55 pm
by Marius Mainea
Deconditionam :\( \frac{1}{a^2+1}=x \) etc. si obtinem inegalitatea \( \sum \sqrt{\frac{(1-x)(1-y)}{xy}} \leq \frac{3}{2} \) cu \( x+y+z=2 \) sau mai departe \( \sum{\sin\frac{A}{2}} \leq \frac {3}{2} \) unde A,B,C sunt unghiurile triunghiului cu laturile x,y,z.

Posted: Thu Dec 11, 2008 11:01 pm
by Claudiu Mindrila
Conditia problemei este verificata cu substitutiile \( a=\sqrt{\frac{x}{y+z}} \) , \( b=\sqrt{\frac{y}{z+x}} \), \( c=\sqrt{\frac{z}{x+y}}(x,y,z>0) \).

Problema revine la a demonstra ca pentru orice \( x,y,z>0 \) are loc inegalitatea: \( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \frac{3}{2}. \)
Conform inegalitatii \( AM-GM \) avem:
\( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \sum \frac{\frac{x}{z+x}+\frac{y}{z+y}}{2}=\frac{3}{2} \)