Page 1 of 1
JBTST II 2008, Problema 3
Posted: Mon Jun 16, 2008 11:08 pm
by Laurian Filip
Fie \( n \in \mathbb{N}^* \) si numerele reale strict pozitive \( a_1,a_2,...,a_n \) cu proprietatea ca:
\( a_1+a_2+...+a_n=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2} \).
Sa se demonstreze ca pentru orice m=1,2,3,...n, exista m numere dintre cele date avand suma cel putin egala cu m.
Posted: Wed Jun 18, 2008 12:52 pm
by mihai++
Consideram \( f(x)=x-\frac{1}{x^2} \) care este concava si strict crescatoare.
\( f(1)=0=\sum f(a_i)\leq nf(\frac{\sum a_i}{n})\rightarrow \sum a_i\geq n \) si apoi ies toate.
Posted: Wed Jun 18, 2008 2:19 pm
by Marius Mainea
Aplicam CBS:\( \sum a_i=\sum \frac{1}{a_i^2}\geq \frac{1}{n}(\sum \frac{1}{a_i})^2\geq \frac{n^3}{(\sum a_i)^2} \) si de aici \( \sum a_i \geq n \)
Posted: Wed Jun 18, 2008 3:26 pm
by Beniamin Bogosel
Fie
\( 1\leq m \leq n \) fixat. Presupunem ca oricare
\( m \) numere din cele date au suma mai mica decat
\( m \).
Atunci
\( \sum_{X\subset \{1,...,n\}, |X|=m, j\in X}a_j< \left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \left(\matrix{n-1\\ m-1}\right)\sum_{i=1}^na_i<\left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \) \( \Rightarrow\sum_{i=1}^na_i<\frac{n!}{(n-m)!m!}\cdot \frac{(m-1)!(n-m)!}{(n-1)!}\cdot m=n \).
Din ce a fost scris mai sus e gata...
