Page 1 of 1

Caracterizare pentru functii surjective

Posted: Mon Jun 16, 2008 2:52 pm
by Beniamin Bogosel
Fie \( f:X\to Y \) o functie. Demonstrati ca urmatoarele afirmatii sunt echivalente:

a) \( f \) este surjectiva;
b) \( \forall B \in\mathcal{P}(Y) \) avem \( B=f(f^{-1}(B)) \);
c) \( \forall A \in \mathcal{P}(X) \) avem \( Y\setminus f(A) \subseteq f(X \setminus A) \);
d) \( \forall B,E \in \mathcal{P}(Y) \) avem \( f^{-1}(B) \subseteq f^{-1}(E) \Rightarrow B\subseteq E \);
e) \( \forall Z \) multime si orice \( g,h:Y\to Z \) avem \( g\circ f=h\circ f\Rightarrow g=h \);
f) \( \exists g_{0}:Y \to X \) injectiva cu \( f\circ g_{0}=1_{Y} \);
g) \( f_{*}:\mathcal{P}(X)\to \mathcal{P}(Y) \) este surjectiva, unde \( f_{*}(A)=f(A),\ \forall A \in \mathcal{P}(X) \);
h) \( f^{*}:\mathcal{P}(Y) \to \mathcal{P}(X) \) este injectiva, unde \( f^{*}(B)=f^{-1}(B),\ \forall B \in \mathcal{P}(Y) \).

Re: Caracterizare pentru functii surjective

Posted: Thu Mar 12, 2009 8:10 pm
by gefest
Beniamin Bogosel wrote: b) \( \forall B \in\mathcal{P}(Y) \) avem \( B=f(f^{-1}(B)) \);
Incerc sa demonstrez a)\( \to \)b), dar nu inteleg notatia. Pe unde am citit prin \( f(f^{-1}(a)) \) se intelege compunerea functiilor. Iar \( B \) din conditie este o multime obisnuita inclusa in \( Y. \)

Posted: Thu Mar 12, 2009 10:17 pm
by Beniamin Bogosel
Daca \( A\subset X,\ B\subset Y \) sunt multimi si \( f:X\to Y \), atunci \( f(A)=\{y\in Y:\ \exists x \in X \mbox{astfel incat} \ f(x)=y\},\ f^{-1}(B)=\{x \in X:\ f(x) \in B\} \).