Inegalitate cu suma patratelor 1
Posted: Tue Jun 10, 2008 5:31 pm
Fie \( n \geq 4 \) natural si \( a_1, ... ,a_n \in R_+ \) astfel incat \( \sum_{i=1}^{n} {{a_i}^2} = 1 \). Aratati ca:
\( \sum_{k=1}^{n} {\frac {a_k}{{a_{k+1}}^2 + 1} \) \( \geq \) \( \frac {4}{5} \) \( {(\sum_{k=1}^{n} {a_k \sqrt {a_k}})}^2 \) unde \( a_{n+1}=a_1 \)
TST III - 2002 Problema 2
\( \sum_{k=1}^{n} {\frac {a_k}{{a_{k+1}}^2 + 1} \) \( \geq \) \( \frac {4}{5} \) \( {(\sum_{k=1}^{n} {a_k \sqrt {a_k}})}^2 \) unde \( a_{n+1}=a_1 \)
TST III - 2002 Problema 2