Page 1 of 1
K algebric inchis in L => K(X) algebric inchis in L(X)
Posted: Fri Jun 06, 2008 3:12 pm
by dede
Daca \( K \subset L \) este o extindere de corpuri si \( K \) este algebric inchis in \( L \), atunci \( K(X) \) este algebric inchis in \( L(X) \).
Posted: Fri Jun 06, 2008 3:15 pm
by Dragos Fratila
Polinomul \( T^2-X \) are radacina in L(X)?
Posted: Fri Jun 06, 2008 3:33 pm
by dede
Daca K(X) nu este algebric inchis, atunci nu este nici in L(X), oricare \( K \subset L \), deci nu e adevarat, corect?