Page 1 of 1

Examen Geometrie, 2.06.2008, an II

Posted: Tue Jun 03, 2008 6:17 pm
by dede
Examen: Geometrie
Profesor: Iulia Hirica

Teorie
1) Algebre Lie
2) Conexiuni liniare Koszul
3) Varietati paralelizabile

2 subiecte la alegere din cele 3

Probleme
1) \( X=e^{x^1}\frac{\partial}{\partial x^1} \)

\( Y=\cos x^1\frac{\partial}{\partial x^2} \)
a) \( [X,Y]+[X,x^1X+x^2Y]= ? \)
b) care sunt traiectoriile lui \( X? \)
c) este \( X \) complet?

2) \( \omega=(x^1)^2dx^2\wedge dx^3 \)
\( \eta=e^{x^1}dx^1+e^{x^2}dx^2+e^{x^3}dx^3 \)
a) \( d\omega+d\eta+d(d\omega+\eta)=? \)
b) \( X \) era dat, nu mai stiu cat
\( i_x w=? \)

1 problema la alegere din cele 2

Posted: Tue Jun 03, 2008 10:03 pm
by bae
***

Posted: Wed Jun 04, 2008 10:31 am
by dede
cei care nu au venit deloc la scoala