By Mircea Lascu
Posted: Sat May 31, 2008 11:11 am
Sa se arate ca oricare ar fi numerele reale \( a,b,c>0 \) avem:
\( \frac{a^3+b^3+c^3}{3abc}+\frac{3\sqrt[3]{abc}}{a+b+c} \geq 2 \).
Mircea Lascu, G.M. 9/2005
\( \frac{a^3+b^3+c^3}{3abc}+\frac{3\sqrt[3]{abc}}{a+b+c} \geq 2 \).
Mircea Lascu, G.M. 9/2005