Arii egale si nu numai ...
Posted: Wed May 28, 2008 11:59 pm
1. In afara triunghiului \( A \) - dreptunghic \( ABC \) se construiesc patratele \( ABMN \) si \( ACPQ \) .
Notam intersectiile \( T\in BP\cap CM \) , \( R\in AB\cap CM \) , \( S\in AC\cap BP \) . Sa se arate ca
\( \frac {[CST]}{b^3}=\frac {[BRT]}{c^3}=\frac {[BCT]}{bc(b+c)}=\frac {bc}{2(b+c)(b^2+bc+c^2)} \) si \( [BCT]=[ASTR] \) .
Observatie. Am folosit notatiile standard : \( AB=c \) , \( AC=b \) si aria \( [XYZ] \) a triunghiului \( XYZ \) .
2. Se considera un triunghi \( ABC \) . Pentru \( M\in (BC) \) notam
\( \left\|\begin{array}{ccc}
N\in AC & , & MN\parallel AB\\\\
P\in AB & , & MP\parallel AC\end{array} \) , \( \left\|\begin{array}{c}
X\in MP\cap BN\\\
Y\in MN\cap CP\\\
Z\in BN\cap CP\end{array} \) . Sa se arate ca \( [MXZY]=[PZN] \) .
Observatie. Mai exact, daca notam \( \frac {MB}{MC}=m \) , atunci avem lantul de rapoarte egale :
\( \frac {[PXZ]}{m^3}=\frac {[NYZ]}{1}=\frac {[PZN]}{m(m+1)} \) \( =\frac {[XMYZ]}{m(m+1)}=\frac {[MNP]}{(m+1)(m^2+m+1)}=\frac {m}{(m+1)^3(m^2+m+1)} \) .
Notam intersectiile \( T\in BP\cap CM \) , \( R\in AB\cap CM \) , \( S\in AC\cap BP \) . Sa se arate ca
\( \frac {[CST]}{b^3}=\frac {[BRT]}{c^3}=\frac {[BCT]}{bc(b+c)}=\frac {bc}{2(b+c)(b^2+bc+c^2)} \) si \( [BCT]=[ASTR] \) .
Observatie. Am folosit notatiile standard : \( AB=c \) , \( AC=b \) si aria \( [XYZ] \) a triunghiului \( XYZ \) .
2. Se considera un triunghi \( ABC \) . Pentru \( M\in (BC) \) notam
\( \left\|\begin{array}{ccc}
N\in AC & , & MN\parallel AB\\\\
P\in AB & , & MP\parallel AC\end{array} \) , \( \left\|\begin{array}{c}
X\in MP\cap BN\\\
Y\in MN\cap CP\\\
Z\in BN\cap CP\end{array} \) . Sa se arate ca \( [MXZY]=[PZN] \) .
Observatie. Mai exact, daca notam \( \frac {MB}{MC}=m \) , atunci avem lantul de rapoarte egale :
\( \frac {[PXZ]}{m^3}=\frac {[NYZ]}{1}=\frac {[PZN]}{m(m+1)} \) \( =\frac {[XMYZ]}{m(m+1)}=\frac {[MNP]}{(m+1)(m^2+m+1)}=\frac {m}{(m+1)^3(m^2+m+1)} \) .