Page 1 of 1

C:1079, G.M. 1/1991

Posted: Wed May 28, 2008 10:34 pm
by Claudiu Mindrila
Aratati ca, oricare ar fi numerele reale strict pozitive \( x,y,z \), are loc inegalitatea: \( \frac{x}{13x+y+z}+\frac{y}{x+13y+z}+\frac{z}{x+y+13z} \leq \frac{1}{5} \).

Posted: Wed May 28, 2008 11:00 pm
by Beniamin Bogosel
Ideea generala la astfel de inegalitati: se noteaza numitorii cu \( a,b,c \) si se obtine un sistem din care se obtin \( x,y,z \) din \( a,b,c \) astfel:
\( x=\frac{1}{12}(a-\frac{a+b+c}{15}) \) si analoagele. Inegalitatea este echivalenta cu:

\( \sum\frac{1}{12}(\frac{14}{15}-\frac{b+c}{15a})\leq \frac{1}{5}\Leftrightarrow \frac{42}{15}-\sum\frac{b+c}{15a}\leq \frac{12}{5}\Leftrightarrow \sum\frac{b+c}{a}\geq 6 \), ceea ce e cunoscut.

O problema mai serioasa ar fi sa determinati numerele \( p \) care pot fi inlocuite in locul lui 13 in inegalitate pentru ca \( \sum\frac{x}{px+y+z}\leq \frac{3}{p+2} \).

Posted: Wed May 28, 2008 11:34 pm
by Marius Mainea
\( p\geq1 \)

Re: C:1079, G.M. 1/1991

Posted: Thu May 29, 2008 12:18 am
by Virgil Nicula
Claudiu Mandrila wrote:O usoara extindere. \( \left\|\ \begin {array} {c}
\{\ a\ ,\ b\ ,\ c\ ,\ x\ ,\ y\ ,\ z\ \}\subset (0,\infty )\\\\
c\le b\le \sqrt {ac}\le a \end{array}\ \right\| \)
\( \Longrightarrow \) \( \frac{x}{ax+by+cz}+\frac{y}{cx+ay+bz}+\frac{z}{bx+cy+az} \leq \frac{3}{a+b+c} \) .

Posted: Thu May 29, 2008 12:18 am
by Marius Dragoi
Fie \( S=x+y+z \)
\( \sum_{cyc}{} {\frac {1}{p-1+ \frac {S}{x}}} \) \( \leq \) \( \frac {3}{p+2} \) \( \Leftrightarrow \) \( \sum_{cyc}{} {\frac {p-1}{p-1 + \frac {S}{x}}} \) \( \leq \) \( \frac {3(p-1)}{p+2} \) \( \Leftrightarrow \) \( 3 - \frac {3(p-1)}{p+2} \) \( \leq \) \( \sum_{cyc}{} {\frac {\frac {S}{x}}{p-1 + \frac {S}{x}}} \) \( \Leftrightarrow \)

\( \Leftrightarrow \) \( \frac {9}{p+2} \) \( \leq \) \( \sum_{cyc}{} {\frac {1}{\frac {(p-1)x}{S} + 1}} \) (1)

dar \( \sum_{cyc}{} {\frac {1}{\frac {(p-1)x}{S} + 1}} \) \( \frac {Cauchy}{\geq} \) \( \frac {9}{p-1 +3} = \frac {9}{p+2} \)

Asadar (1) este indeplinita pentru oricare \( p \geq 1 \). :wink: