Page 1 of 1

O inegalitate elementara

Posted: Mon May 26, 2008 8:00 pm
by Marius Mainea
Fie \( x,y,z\in(0,\infty) \) astfel ca \( xyz=1 \). Sa se arate ca
\( \frac{xy}{1+z^2}+\frac{yz}{1+x^2}+\frac{zx}{1+y^2}\geq\frac{3}{2} \).

Marius Mainea, RMT 1/2008

Posted: Mon May 26, 2008 9:21 pm
by Beniamin Bogosel
Avem \( \sum \frac{xy}{1+z^2}=\sum \frac{(xy)^2}{xy+xz\cdot yz} \). Renotam \( xy=a,\ yz=b, zx=c \) si avem deasemenea \( abc=1 \).

Inegalitatea devine: \( \sum \frac{a^2}{a+bc}\geq \frac{3}{2} \). Din inegalitatea CBS obtinem \( \sum \frac{a^2}{a+bc}\geq \frac{(\sum a)^2}{\sum a+\sum ab} \).

Acum, daca aplicam inegalitatea mediilor pentru \( a^2, a^2 , bc \) avem \( 2a^2+bc \geq 3a \). Insumam toate inegalitatile analoage si avem
\( 2\sum a^2+\sum ab\geq 3\sum a \Leftrightarrow 2(a+b+c)^2\geq 3(\sum a+\sum ab) \), adica \( \frac{(\sum a)^2}{\sum a+\sum ab}\geq \frac{3}{2} \). Deci am terminat :)

Posted: Mon May 26, 2008 10:17 pm
by Claudiu Mindrila
Solutia pe care am dat-o eu:

Pentru inceput \(
\frac{{xy}}
{{1 + z^2 }} = \frac{1}
{{z\left( {1 + z^2 } \right)}} = \frac{{z^2 + 1}}
{{z\left( {1 + z^2 } \right)}} - \frac{{z^2 }}
{{z\left( {1 + z^2 } \right)}} = \frac{1}
{z} - \frac{z}
{{1 + z^2 }}

\)
si analoagele.... .
Obtinem ca
\(
\sum {\frac{{xy}}
{{1 + z^2 }} = \sum {\frac{1}
{z} - \frac{z}
{{1 + z^2 }}} } \)
.
Din faptul ca \( x^2 + 1 \geq 2x \) si \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \sqrt[3]{\frac{1}{xyz}}= 3 \) rezulta cerinta...

Posted: Mon May 26, 2008 11:03 pm
by Marius Mainea
Asta este si solutia mea ,Claudiu . Bravo!