Page 1 of 1

Inegalitate din lista scurta 2008

Posted: Wed May 21, 2008 10:02 am
by Marius Dragoi
Demonstrati ca pentru oricare trei numere reale strict pozitive \( a,b,c \) cu \( abc=1 \) avem inegalitatea:

\( \sum_{ciclic}{} {\frac {a^2+b^2}{a^4+b^4}} \leq a+b+c \).

ONM Shortlist 2008, Molea F. Gheorghe

Posted: Wed May 21, 2008 12:17 pm
by BogdanCNFB
\( \frac{a^2+b^2}{a^4+b^4}\leq\frac{2}{a^2+b^2}\leq\frac{1}{ab}=c \)
Analog, \( \frac{b^2+c^2}{b^4+c^4}\leq a \) si \( \frac{c^2+a^2}{c^4+a^4}\leq b \)
Prin insumare rezulta concluzia.