Invertible matrix of even size
Posted: Sat May 17, 2008 10:31 am
Let E bet the set of matrices A in M(2n,R) such that
\( a_{ii}=0 \) for any \( 1\leq i\leq 2n \)
\( a_{ij} \) is -1 or 1 for any \( 1\leq i\neq j\leq 2n \)
1/ For A in E prove det(A) is an odd integer.
2/ Find the maximum of \( |\det(A)| \) for any matrix \( A \in E \) and find the minimum of \( |\det(A)| \) for any \( A \in E \).
\( a_{ii}=0 \) for any \( 1\leq i\leq 2n \)
\( a_{ij} \) is -1 or 1 for any \( 1\leq i\neq j\leq 2n \)
1/ For A in E prove det(A) is an odd integer.
2/ Find the maximum of \( |\det(A)| \) for any matrix \( A \in E \) and find the minimum of \( |\det(A)| \) for any \( A \in E \).