Page 1 of 1

O.G.: 489, G.M. 12/2006, V. Chiriac

Posted: Wed Apr 23, 2008 1:31 pm
by Claudiu Mindrila
Sa se determine \(
x,y \in \mathbb{Z}

\)
care verifica egalitatea: \(
\sqrt {10 - x} + \sqrt {y + 3} = 1 + \left| {x - y} \right|

\)


O.G.: 489, G.M. 12/2006, V. Chiriac)

Posted: Sun May 18, 2008 8:18 pm
by Marius Dragoi
Observam ca: \( x=10-a^2 \) si \( y=b^2-3 \) , unde \( a,b \in Z \).
\( \Rightarrow |a|+|b|=1+|13-(a^2+b^2)| \geq 1+|a^2+b^2|-13 = a^2+b^2-12 \) \( \Rightarrow |a|+|b|+12 \geq a^2+b^2 \) \( \Rightarrow a,b\in [-4,...,4] \)
Se trateaza relativ usor toate cazurile si obtinem perechile: \( x,y\in {(-6,-3)},{(1,-2)},{(1,-3)},{(9,6)},{(10,13)} \).