JBTST III 2007, Problema 4

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

JBTST III 2007, Problema 4

Post by Laurian Filip »

Fie a,b,c numere reale pozitive cu proprietatea:

\( \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\geq 1. \)

Sa se arate ca

\( a+b+c \geq ab+bc+ca \).
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( \sum_{cyc}{} {\frac {1}{a+b+1}} = 3 - \sum_{cyc}{} {\frac {a+b}{a+b+1}} \geq 1 \Rightarrow 2 \geq \sum_{cyc}{} {\frac {a+b}{a+b+1}}= \sum_{cyc}{} {\frac {a^2}{a^2+ab+a}} + \sum_{cyc}{} {\frac {a^2}{a^2+ac+a}} \)

\( \frac {Cauchy}{\geq} \) \( \frac {4({a+b+c})^2}{2 \sum_{cyc}{} {(a^2+ab+a)}} = \frac {2({a+b+c})^2}{\sum_{cyc}{} {(a^2+ab+a)}} \) \( \Rightarrow \sum_{cyc}{} {a^2} + \sum_{cyc}{} {ab} + \sum_{cyc}{} {a} \geq ({a+b+c})^2 \Rightarrow a+b+c \geq ab+bc+ca \) QED
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Inegalitati”