Page 1 of 1

abcd

Posted: Sat Mar 22, 2008 1:56 pm
by handleman
Determinati numerele naturale nenule a, b, c, d stiind ca \( \bar{abcd} \) este divizibil cu 40, iar cifrele verifica egalitatea a+d=b+c.

Posted: Sat Mar 22, 2008 2:58 pm
by deleter
(nu sunt numere naturale nenule! , sunt cifre)
\( a+d=x \)
\( b+c=x \)
\( \overline{abcd}=1000a+d+100b+10c=1000x+110x=1110x=> \)\( 1110 \)nu este divizibil=>x \( | 40 => x\in {1,2,4,8}=> \) \( a \) \( diferit \) \( de \) \( 0 \) \( =>a=1 \),\( d=0 \)

Posted: Mon Mar 24, 2008 5:51 pm
by handleman
total gresit

Posted: Mon Mar 24, 2008 7:40 pm
by mihai++
\( \overline{abcd}\vdots 10 \rightarrow d=0 \rightarrow \overline{abc} \vdots 4 \) si \( a=b+c \).
Sunt multe solutii: luam \( \overline{bc}\vdots 4 \) si excludem pe cele cu \( b+c>9 \).

Posted: Mon Mar 24, 2008 7:51 pm
by marius00
a >0 a<=9, 0<=b,c,d<=9
d=0 abcd divizibil cu 10 => ultima cifra e 0
=> a=b+c
1000a+100b+10c div. cu 40
40*25a+100b+10c div. cu 40 =>
100b+10c divizibil cu 40
b=1 c=2 => a=3 => abcd=3120
b=1 =6 => a=7 => abcd=7160
b=2 c=0 => a=2 => abcd=2200
b=2 c=4 => a=6 => abcd=6240
b=2 c=8 => a=10 => a nu e cifra
b=3 c=2 => a=5 => abcd=5320
b=3 c=6 => a=9 => abcd=9360
b=4 c=0 => a=4 => abcd=4400
b=4 c=4 => a=8 => abcd=8440
b=4 c=8 => a=12 => a nu e cifra
b=5 c=2 => a=7 => abcd=7520
b=5 c=6 => a=11 => a nu e cifra
b=6 c=0 => a=6 => abcd=6600
b=6 c=4 => a=10 => a nu e cifra
b=7 c=2 => a=9 => abcd=9720
b=7 c=6 => a=13 => a nu e cifra
b=8 c=0 => a=8 => abcd=8800
b=8 c=4 => a=12 => a nu e cifra
b=8 c=8 => a=16 => a nu e cifra
b=9 c=2 => a=11 => a nu e cifra
b=9 c=6 => a=15 => a nu e cifra
deci
S={3120, 7160, 2200, 6240, 5320,9360,4400,8440,7520,6600,9720,8800}